View Reports, News and Statistics Related to Your Home State

Corralling xenon gas out of waste streams

Subscribe to our Research Environment News RSS Feed
Category: Research
Type: News
Source: PNNL
Date: Tuesday, January 30th, 2018

PNNL demonstrates tiny porous materials can economically separate gas for growing demand

News Release

January 30, 2018 Share This!

  • Metal Organic Frameworks, with nanopores and a high affinity for xenon, can separate the gas from air or waste streams. Xenon has applications in various fields including lighting, space propulsion and medicine.

previous one of one next

RICHLAND, Wash. - From space propulsion to lighting to surgical anesthesia, the applications and needs for xenon gas are growing. And the good news is that researchers are advancing the science to more easily remove xenon from waste streams and collect the low amounts of it found in the atmosphere.

Researchers at the D.O.E.'s Pacific Northwest National Lab are at the forefront of research developing porous nanoscale materials to capture xenon. They report in the journal Chem this month, that inexpensive materials called metal-organic frameworks have been very successful in separating the gas in a way that may make it far less expensive than existing means of producing it.

Currently, industry uses a common but expensive process called cryogenic distillation to separate xenon from other gases or the atmosphere. In that costly process, a lot of energy is used to chill entire gas streams down to far below freezing in order to concentrate the xenon.

"The process we've demonstrated to selectively trap xenon in a MOF can be done at room temperature," said Praveen Thallapally, a materials scientist at PNNL and a corresponding author on the paper. "You pass a mixed gas stream over the MOF materials just one time to capture the xenon and it can be stored long term and easily released for industrial applications when you want to use it."

The paper's authors note that xenon would likely be used more if it was more economical to produce. For instance, they point to reports that show xenon is considered a better surgical anesthetic than the existing technology as it is more potent, less risky, more environmentally friendly and potentially recyclable.

Xeon also has applications in lighting, flash lamps, arc lamps, radiation detectors, medical imaging, research imaging with nuclear magnetic resonance, semiconductors, lasers, space propulsion, the search for dark matter and nuclear processing.

MOFs, while nano-sized, have a high surface area and are full of pores that can suck up gases like sponges suck up water. There are thousands of MOFs that exist and can be created but each need to be tuned or optimized to attract and hold different gases of interest.

Researchers at PNNL, in collaboration with other research groups, optimized the properties of a MOF material called SBMOF-1 and demonstrated that it selectively traps xenon and, in a 2nd pass, can also trap krypton, both of which are byproducts of nuclear reprocessing. Much of this research is funded by DOE's Office of Nuclear Energy to explore technologies that may one day enable safe, efficient recycling of nuclear fuel.

The PNNL team patented its separation process and is interested in partnering with companies to do additional testing or licensing of the technology. For more information on licensing or collaboration contact Sara Hunt.


Reference: Debasis Banerjee, Cory M. Simon, Sameh K. Elsaidi, Maciej Haranczyk and Praveen Thallapally. Xenon gas separation and storage using metal-organic frameworks, Chem, (2018), DOI: 10.1016/j.chempr.2017.12.025.

Tags: Energy, Environment, Fundamental Science, Environmental Remediation, Chemistry, Materials

PNNL LogoInterdisciplinary teams at Pacific Northwest National Lab address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an yearly budget of nearly $1 billion. It is managed and operated by Battelle for the D.O.E.'s Office of Science. As the single biggest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, Instagram, LinkedIn and Twitter.

  User Comments  
There are currently no comments for this story. Be the first to add a comment!
Click here to add a comment about this story.
  Green Tips  
Clean the lint filter in your family's clothes dryer every time the dryer is used. This increases air circulation which helps clothes dry more quickly, saving energy.
  Featured Report  
Trash & Recycling By Durable Goods
View charts showing the trash generation and recycling rates of various durable goods

View Report >>

  Green Building  
Sustainable Building Advisor Program- The Next Great Step
Beyond LEED - check out The Sustainable Building Advisor Program....Read Complete Article >>

All Green Building Articles